
ICT159 Lecture Notes Topic 2 – Page 1

Topic 2 –
Introduction to

Programming and
Sequence

HISTORY AND ORIGINS
 In this unit, we will be studying the C language.
 C was one of the first high-level languages that made it easy

for programmers to write portable programs.

Advantages of C:

 It is easy to learn the basics.
 It is syntactically similar to many other languages that you

may go on to study or learn later.
 It is relatively portable: works on many platforms.
 Programs written in C are very fast.
 It is a very powerful, flexible and still widely used.

Disadvantages of C:

 C imposes very few restrictions on what you can do: it
doesn't stop you making your own mistakes!

 Because of this, writing good and reliable programs in
C requires discipline.

 It isn't as portable some languages, such as Java.
 To use it well, particularly its more advanced features,

requires a good understanding of the underlying technical
aspects of the computer's operation.

 We will be sticking with the basics in this unit.

ICT159 Lecture Notes Topic 2 – Page 2

A “Hello World” Program
 It is quite common when learning a first language to write a

so-called “Hello World” program.
 This is just a trivial program which prints “Hello World” to

the screen and then exits.
 Although pointless from a functional point of view, it is

useful because it demonstrates the basic syntax of C.

#include <stdio.h>

int main()

{

 /* Print the message and then a

 newline */

 printf(“Hello World!\n”);

 return(0);

}

Let's go through this program line by line...

#include <stdio.h>

This line is included in many C programs and is there primarily
to allow us to use the input/output (IO) routines that C provides.

In this case, printf() which prints things to the screen.

int main()

{ ... }

The code in a C program is split into sections called functions.
All C programs have a so-called “main function”. This is
where the running of the program begins and everything
between the curly brackets is part of it.

ICT159 Lecture Notes Topic 2 – Page 3

/* Print the message and then a new line */

This is called a “comment” and is there to tell people who read
the code what various parts of the program do. Comments are
very important to include in your code to allow other people to
understand it and be able to potentially modify it to improve it or

correct bugs. Everything between the /* and */ is treated as a
comment and ignored by the compiler. Note that comments can
stretch over many lines.

printf(“Hello World!\n”);

Finally we have a program statement that actually does
something! This prints the message “Hello World!” (without the
quotation marks) to the screen. However it also includes a

special \n character which means to print a new line. Note the

semi-colon character ; at the end of the line: this indicates that
the program statement ends.

return(0);

This tells the main() function to finish (the program exits). The
zero simply means that the program exited normally without any
errors.

ICT159 Lecture Notes Topic 2 – Page 4

Observations on C Syntax
 The rules that dictate how we write the code in a given

language are referred to as the language's syntax.
 Even from the simple program above, we can learn a number

of important syntactical rules relating to C.

 Firstly, apart from the #include declaration, all of the lines

that make up the program are included within the main()
function.

 That is, the program statements are all between the curly

brackets: { }

 The second thing we can observe is that each program

statement must end with a semicolon or ; character.
 Note that this doesn't apply to every physical line in the

program.
 It just applies to lines that actually do something

(represent instructions).

 Lines such as int main() don't actually do something
so do not need a semicolon.

 Also lines which begin with # like #include

<stdio.h> are called “pre-processor directives” and
aren't technically considered C statements.

 Finally comments do not require a semicolon.

ICT159 Lecture Notes Topic 2 – Page 5

Code Layout
 Another thing you may notice is the careful indented

structure of the code.
 Although it doesn't affect the execution of the code,

indenting is critically important when writing programs
because it assists the reading of that code later on.

 The pattern of the indenting identifies the structure of the
program.

 Indentation and code style make up a significant part of your
marks in this unit.

 The general rule you should apply is to always indent after

an opening curly bracket {
 You then “unindent” when the matching closing curly

bracket } occurs.

 Example:

int main()

{

 printf(“Welcome to the program!”);

 return(0);

}

 Also note the line spacing: between the printf() and the

return there is a blank line.
 Although perhaps less critical than indenting, this shows that

the two statements are involved with doing separate things.

 So a collection of perhaps 3-5 statements that are all

involved with one small step in your program should be
together with a blank line between them and the next “mini-
block” of code.

ICT159 Lecture Notes Topic 2 – Page 6

VARIABLES
 For a program to be useful, it must be able to store and

manipulate data.
 Modern programming languages let us allocate small areas

of memory in which to store our data.
 Each of these bits of memory are then given a name by

which we can refer to it in the program and are generally
called variables.

The following is a diagram illustrating this concept:

 3.2 'A'

 30

The variables are all given names (cost, sum, letter) and
they refer to an area or cell of memory where the data is stored.

Also note that many cells aren't being used and so aren't given
names. The contents of these cells are unknown.

 Variables are an important concept in programming.
 However, they are also important when writing algorithms in

order to consistently identify the piece of data the algorithm
is referring to.

 When writing algorithms, always give suitable names to
your pieces of data (variables) so you can refer to them
later on.

sum
letter cost

ICT159 Lecture Notes Topic 2 – Page 7

Variable Names
 The choice of the right name for a variable is important.
 For some variables that have very limited use, you might just

choose a short name:

int i;

 However, most of the time you should choose a name that
helps to describe the purpose of the variable.

 The name shouldn't be too long though.

 Programming languages impose a set of restrictions on

variable names and, although these restrictions do differ,
they are mostly pretty similar.

In C you must choose variable names that:

 Do not begin with a number.
 Do not contain any punctuation characters (except for an

underscore) or whitespace (space, tab, new line etc.)
 Are not so-called “reserved words” which are part of the

C language and therefore already have meanings.

 You also cannot have two variables with the same name
in the same part of the program.

ICT159 Lecture Notes Topic 2 – Page 8

DATA TYPES
 Of course, not all data is the same (see above diagram).

 Data comes in many different types and C provides a set of

built-in (“primitive”) data types for this purpose.

Numeric Types
 Here is a program which demonstrates the use of the two

main numeric data types, float and int plus some other
important C concepts.

#include <stdio.h>

int main()

{

 int x = 10;

 int y = 5;

 int total;

 float avg;

 /* Calculate total and then average */

 total = x + y;

 avg = total / 2.0;

 printf(“Total is %d\n”, total);

 printf(“Average is %f\n”, avg);

 return(0);

}

ICT159 Lecture Notes Topic 2 – Page 9

Again let's go through this program.

int x = 10;

int y = 5;

These lines create two new variables (data storage areas) in

memory called x and y that both store whole or integer numbers,

which C calls int. The allocation of memory storage for these
and the assigning of the names to them is called declaring the
variables. Variables must be declared before being used and

this must be done at the top of the function in which they
appear. However, these variables also have initial values
assigned to them and this is called initialisation.

int total;

float avg;

These are two other variables being declared. The first called

total is an integer, however, it is not initialised. This means it
will have an unknown (random) initial value. The second

variable avg is a so-called “floating-point number”, which is a
number with a fractional part. It too is not initialised.

total = x + y;

avg = total / 2.0;

The first line is an assignment statement similar to the

initialisation of the other variables. It adds x and y to one

another and then assigns the result to total. The second line

divides total by two and assigns the result to avg.

 Note that this is so-called “floating point” division rather

than integer division which is why “2.0” is used rather than
“2”.

 If you are dividing two integers but want the result to be a
float then you need to force one of the numbers to be a float.

ICT159 Lecture Notes Topic 2 – Page 10

printf(“Total is %d\n”, total);

printf(“Average is %f\n”, avg);

These are just like the printf() statements before but this time

they output the value of two variables. The %d in the first

statement tells printf to expect a decimal (integer) value, in

this case total. The %f tells the second printf to expect a

floating point number, namely avg.

The char data type
 Apart from storing numbers (both integral and fractional),

you can also store character data.
 This includes alphabetics, numbers and symbols.

 Characters are stored using the ASCII system, whereby each

symbol is assigned a number and this number is stored by
the computer.

 This is required because computers can only store and
process numbers.

 The following is a subset of the ASCII table:
32 = (space) 33 = ! 34 = " 35 = # 36 = $ 37 = %

38 = & 39 = ' 40 = (41 =) 42 = * 43 = +
44 = , 45 = - 46 = . 47 = / 48 = 0 49 = 1
50 = 2 51 = 3 52 = 4 53 = 5 54 = 6 55 = 7
56 = 8 57 = 9 58 = : 59 = ; 60 = < 61 = =
62 = > 63 = ? 64 = @ 65 = A 66 = B 67 = C
68 = D 69 = E 70 = F 71 = G 72 = H 73 = I
74 = J 75 = K 76 = L 77 = M 78 = N 79 = O
80 = P 81 = Q 82 = R 83 = S 84 = T 85 = U
86 = V 87 = W 88 = X 89 = Y 90 = Z 91 = [
92 = \ 93 =] 94 = ^ 95 = _ 96 = ` 97 = a
98 = b 99 = c 100 = d 101 = e 102 = f 103 = g

104 = h 105 = i 106 = j 107 = k 108 = l 109 = m
110 = n 111 = o 112 = p 113 = q 114 = r 115 = s
116 = t 117 = u 118 = v 119 = w 120 = x 121 = y
122 = z 123 = { 124 = | 125 = } 126 = ~

ICT159 Lecture Notes Topic 2 – Page 11

 In C, characters are stored using the char data type:

char letter = 'a';

...

letter = '5';

Take careful note of what is happening here!

You can use the table above to see what value is actually being
stored.

The character variable letter stores the lower-case letter 'a'
(97) .

However, later the letter '5' (53) is assigned to it.

At all times it remains a char and not an int because, to the
computer, character and number data types are completely
different things.

This is indicated by the use of the char data type and also the

single quotation marks, e.g. '5'.

So you cannot perform mathematical calculations on this char
variable and expect to get correct results!

If you want to do any calculations then you should use a

numeric type rather than a char.

ICT159 Lecture Notes Topic 2 – Page 12

Summary of C Data Types
These are some of the common basic C data types:

Type Example Description

int int n = 5; Integer (whole) number
type.

float float length = 3.5; For “floating-point” or
fractional numbers.

char char last = 'Z'; For single alphanumeric
and symbolic characters
(ASCII).

ICT159 Lecture Notes Topic 2 – Page 13

Constants
 Quite often you will find that there is a value you use in your

program that isn't going to change at all.
 Most programming languages, including C, allow you to

define a constant which gives the unchanging value a label
by which you can refer to it throughout the program.

 An example of this in C could be:

 const float PI = 3.14;

 Note that it is important to specify the type of a constant, just

as for variables.
 Note that constant names are always written in ALL

CAPITALS to allow them to be easily distinguished from
variables when reading the code.

 There are two reasons for using constants.

 The first is that assigning a name to a value helps identify

what the value means.
 So someone reading the program doesn't just see some value

and then have to work out what it refers to.

ICT159 Lecture Notes Topic 2 – Page 14

 The second is that if you define a constant and then use it
consistently whenever you need that particular value in your
program, it makes modifying your program much easier.

 For example, you write a program to calculate the

circumference of a circle using the value of pi above.
 But then you find out that the value you used for pi is not

precise enough – you need more decimal places.

 You can simply edit the value of pi where it is defined as a

constant at the start of your code and your program is now
ready to go.

 If you hadn't used a constant you would need to find and

correct every single usage of the value throughout your
program.

 In a complex program this can be a big and error-prone task.

ICT159 Lecture Notes Topic 2 – Page 15

Type Casting
 It is possible to convert data from one type to another and

this is called type casting.

 The general syntax of type casting is to put the type that you

want to cast the variable to in brackets in front of the
variable that you want to cast.

 Here is an example of casting an int to a float and then
back again:

#include <stdio.h>

int main()

{

 int x = 5;

 float y;

 y = (float) x;

 printf("The value of y is %f\n", y);

 y = y*y;

 x = (int) y;

 printf("The value of x is %d\n", x);

 return(0);

}

Type to
cast the
data to. Variable

who's
value you
want to
cast to
another
type.

ICT159 Lecture Notes Topic 2 – Page 16

Type Casting char Data
 Remember that character data is stored as a number since

this is all that computers can store.
 Which number represents which character is determined by

the ASCII system.

 Therefore an important use of type casting is to determine

the ASCII value of a given character.

 If you cast a char variable to an int then this will give you
the ASCII value for that character.

char letter = 'A';

...

printf(“ASCII value for letter %c is %d\n”,

 letter, (int) letter);

Here we print out the variable letter which has the value 'A'
both as a character and then cast to an integer.

Note that %c tells printf() to expect a character variable.

ICT159 Lecture Notes Topic 2 – Page 17

ARITHMETIC OPERATORS AND

ASSIGNMENT
 C has a set of so-called “operators” built into it that are very

similar to most other modern programming languages.
 Operators “do something” on one or more pieces of data.

Arithmetic Operators
 These are the basic arithmetic operations of addition,

subtraction, multiplication and division.
 However, there is another operator called modulus that

calculates the remainder left over when doing integer
division.

Operator Example Description

+ var1 + var2
Adds var1 and var2

- var1 - var2
Subtracts var2 from var1

* var1 * var2
Multiplies var1 by var2

/ var1 / var2
Divides var1 by var2

% var1 % var2 Computes the remainder of dividing

var1 by var2 (Modulus)

 The division operator requires special attention.
 As indicated before, a different division occurs depending on

the types of the variables concerned.
 If both are integer then integer division occurs and the result

will be a whole number – any fractional part will be thrown
away and lost!

 If either operand is a float then the result will also be a float.

ICT159 Lecture Notes Topic 2 – Page 18

Assignment
 There's no point performing a calculation if you can't do

something with the result.
 (However, many people do this by accident when first

learning to program!)

 Nearly always you will want to assign the result of the

calculation to another variable.
 We've already seen this in the example programs.
 Note that initialisation of a variable when it's declared and

assigning of a value are very similar things, they just happen
at different times.

The example from before:

avg = total / 2.0;

Note that this is floating point division, even though total is an
integer.

ICT159 Lecture Notes Topic 2 – Page 19

Incremental Assignment Operators
 Incrementing (that is, increasing by a fixed amount) is a

common operation.

 For example, if we need to count how many times a certain

event happens in a program then it is common to create an
integer variable to do this.

 This variable will be initialised to zero:

int count = 0;

 Then, as the program progresses, each time the event

happens we can increment this counter:

count = count + 1;

 By the time the program finishes, the value of count will be
the number of times the event has occurred.

 Because this is such a common operation, many

programming languages, including C, include special
operators to do this.

 So, instead of the above we could write:

count++;

 The two are identical in their behaviour.

 Note there is also a decrement operator too:

num_left--;

ICT159 Lecture Notes Topic 2 – Page 20

Other Assignment Operators
 Because programmers don't like to type anymore than they

absolutely have to, there are a set of combined assignment
and arithmetic operators!

These are:

Operator Example Shortcut For

 += var1 += var2 var1 = var1 + var2

 -= var1 -= var2 var1 = var1 - var2

 *= var1 *= var2 var1 = var1 * var2

 /= var1 /= var2 var1 = var1 / var2

 %= var1 %= var2 var1 = var1 % var2

 They look confusing at first but are actually pretty simple!

Operator Precedence
 Because different operators can be combined, there are rules

to decide in which order these operations apply.
 Get the order wrong and you will nearly always get the

wrong result.

 In C there are 18 different precedence rules.
 But you only need to learn three!

1. Multiplication and division come first (as they always do...)
2. Put parentheses (brackets) around everything else.
3. If you have any doubt, put brackets around the stuff you

want to happen first.

ICT159 Lecture Notes Topic 2 – Page 21

INPUT/OUTPUT
Simple Output: printf()
 A program is no use if it cannot somehow make available or

“output” its results to the user.
 This is most commonly done by printing the results to the

screen.

 C has a simple built in function called printf() that allows
this.

 We have already seen some examples of this in the programs
above but now we will look at it in more detail.

 Firstly the printf() function takes one or more of what are
called parameters.

 These are variables or data supplied to the function when it
is used or “called” and are separated by commas.

 The first parameter tells printf() how to format the output
it produces (called a “format specifier”).

 The zero or more remaining parameters are the pieces of data

that printf() needs to construct the properly formatted
output.

 A simple example of this with just one parameter comes

from our “Hello World” program:

printf(“Hello World!\n”);

 The parameter here is just to be treated literally and printed

to the screen without any additional formatting.

ICT159 Lecture Notes Topic 2 – Page 22

 However, as we've already seen printf() can process
different data types and output these too:

printf(“Total is %d\n”, total);

printf(“Average is %f\n”, avg);

 Both of these printf() statements have two parameters,
separated by the comma.

 The first parameter for the first statement tells printf() to
output the string “Total is ” and then to output an integer

decimal number (%d) and a newline (\n).

 The value from the second parameter, total, is then used as
that decimal number to be output.

 So if total was 15 then printf() would output “Total is
15” then a newline.

 The second statement is the same except it tells printf() to

expect a floating point number (%f) which will be the value

of the variable avg.

 Although the two statements above are written separately,

we could easily combine them into one with three
parameters:

printf(“Total is %d\nAverage is %f\n”,

 total, avg);

 This demonstrates how printf() works when many
different values are being printed at once.

ICT159 Lecture Notes Topic 2 – Page 23

Input using scanf()
 While output is important, a program that cannot obtain any

data from the user is almost as useless as one which
produces no results.

 By being able to obtain data while it is running (“at
runtime”), a program can be written to solve a general type
of problem and then be applied to specific instances of that
problem simply by varying the input data each time it runs.

 There is a similar function to printf() called scanf() but
this function is used for inputting or reading in data.

 One key difference between printf() and scanf() is
that the format specifier used determines the type of the
data that is being read in.

 Also, the format specifier must have %*c after it for

reasons explained later on.
 The variable into which the data being read in will be

placed must also be specified prefixed by an ampersand.
 An example will help to make this clear.

 Below is a modification of our previous program for

calculating the average of two numbers.
 But this time the numbers aren't “hard-coded” into the

program.

 Instead the user inputs these numbers to the program each

time it is run.
 Thus the same program can calculate the average of any two

given numbers without being specially modified and
recompiled each time.

ICT159 Lecture Notes Topic 2 – Page 24

#include <stdio.h>

int main()

{

 int x, y;

 int total;

 float avg;

 /* Get data from user */

 printf(”Input first number: “);

 scanf(“%d%*c”, &x);

 printf(“Input second number: “);

 scanf(“%d%*c”, &y);

 /* Calculate total and then average */

 total = x + y;

 avg = total / 2.0;

 printf(“Total is %d\n”, total);

 printf(“Average is %f\n”, avg);

 return(0);

}

 One important thing to notice about the use of scanf() is
that the format specifier (the first parameter) contains the

correct format character (%d in this case) for the data type

being read in plus the %*c string.

 The other thing is the presence of the ampersand (&) in front
of the variable.

 This tells the C compiler that scanf() is going to put a new
value into this variable, in this case the value that it reads in
from the user.

ICT159 Lecture Notes Topic 2 – Page 25

 Because scanf() is so similar to printf() it is generally
simple to use.

 However, it is important to be very careful about its syntax.
 In particular, many beginning C programmers forget the

ampersand and end up with programs which crash or behave
strangely!

Issues with scanf()
 You will have noticed that scanf() works a little bit

differently to printf().

 Specifically the need for the ampersand (&) in front of the

variable name and the inclusion of %*c with every format
specifier, regardless of what type it represents.

 The first issue relating to the & is a little difficult to explain

without referring to some quite advanced concepts which we
do not cover in this unit.

 Therefore, it is best if you simply accept this on faith!

 However, the requirement to put %*c after every format
specifier is slightly easier to explain.

 It is not essential to know the explanation though and
this won't be examined.

 The problem stems from scanf()'s need to know exactly
what data it is dealing with.

 If the user inputs the wrong data or there is extra data

that scanf() is not expecting then things go wrong.

 Unfortunately the way scanf() handles the newline
character when the user presses the Enter key means
there often is extra problematic data.

ICT159 Lecture Notes Topic 2 – Page 26

 Input to the computer via scanf() doesn't involve data
being sent immediately to the program as you might expect.

 Instead, each key press is put into a queue where it waits
until the program is ready to process it.

 However, when you enter a piece of data (of any type) you
always press Enter after and this goes into the queue as well.

 Since that Enter key is counted as an input character then

this must be processed by the program too.
 If it is not, then this key press remains in the queue until the

program next goes to read some data from the keyboard via

scanf().

 When this happens, instead of the program getting the data it

expects, it gets the Enter key press instead and the intended
input data simply remains in the queue.

 Therefore, scanf() essentially gets out of sync with the
input data coming from the keyboard.

 The obvious solution to this is to simply process the Enter

key every time a piece of data is read from the keyboard with

scanf().

 This is what %*c does and why it needs to be included
after the format specifier for the data you want to read.

 If you don't do this then some of your input lines may be
skipped or you will read in apparently “empty” lines of data.

 However, even if you do this, if the user then inputs the

wrong type of data etc. then scanf() will still get confused
so this is not a perfect solution.

ICT159 Lecture Notes Topic 2 – Page 27

FROM ALGORITHM TO C

PROGRAM
Simple Algorithm
Here is a simplified algorithm to calculate the total cost of a
product including GST:

 Print “Enter price of product ex-GST: ”

 Read user input into price

 total = price * 1.1

 print “Total price is: ”, total

Note a big limitation of this algorithm is that it doesn't do any
error checking (i.e., checking for negative results) or any
rounding of the results to two decimal places.

Problem Definition
Algorithm Outputs:

 Total price

Algorithm Inputs:

 Price of the product (ex-GST).

Assumptions:

 GST is 10%.
 Only positive values will be supplied.
 No rounding of result is required.

ICT159 Lecture Notes Topic 2 – Page 28

Transition to Code
 Although this problem is quite simple, the problem

definition still clearly defines an important piece of
information we need to write a program.

 And that is the data that the program needs to deal with, in

this case the total price and the original price (the outputs
and inputs respectively).

 This tells us what variables we will need to declare as part of
our program.

 There may be other variables that you need to create as you
write the program but these will be minor, temporary
variables which can be easily added as required.

 Another important piece of information the problem

definition gives us is that we assume the GST is 10%.
 This is an important assumption because, if it is not true, our

algorithm (and subsequent program) will become useless.
 Since the rate of the GST will not actually change while the

program is running, this tells us that we should define a

constant using const to specify the GST rate.

 This also means that if the GST rate does change, we can

easily update our program simply by changing the value of
the constant and without requiring any other changes.

 This is only a minor advantage for a program this simple but
it becomes very important when dealing with larger
programs.

ICT159 Lecture Notes Topic 2 – Page 29

Code Foundation
 Before we can actually write the code to implement our

algorithm, we have to deal with some minor requirements of
the language we're using, in this case C.

 All code in C must be part of a function so for this simple

program we will put it all in the main() function.
#include <stdio.h>

int main()

{

 /* The code can go in here */

 return(0);

}

Data Declarations
 Now we can declare the data (variables and constants) that

we will use.
 Remember we can take this information directly from the

problem definition.

int main()

{

 /* GST is 10% */

 const float GST = 0.1;

 /* Float variables for price and total

 price including GST */

 float price, total;

 return(0);

}

ICT159 Lecture Notes Topic 2 – Page 30

Filling in the Code
 For this very simple case we can just write the code directly

from the algorithm.
 For more complex problems we will later have to adopt

alternative strategies.

int main()

{

 /* GST is 10% */

 const float GST = 0.1;

 /* Float variables for price and total

 price including GST */

 float price, total;

 printf(“Enter price of product ex-GST: “);

 scanf(“%f%*c”, &price);

 /* Calculate total price by multiplying

 ex-GST price by GST percentage + 100%

 */

 total = price * (1+GST);

 /* Result is not rounded to 2 decimal

 places */

 printf(“Total price is: $%f\n”, total);

 return(0);

}

ICT159 Lecture Notes Topic 2 – Page 31

ALGORITHM AND PROGRAM

TESTING
OVERVIEW

 When you first start writing programs you might find that
it takes a little while before you are able to get a program
that will compile.

 However, when the program does compile this often does
not mean that it is finished!

 Instead there will probably still be bugs in the program
meaning that it will not always work as it is supposed to.

 Therefore it is important to test your program carefully so
you can find any bugs that are there and remove them.

 The overall process for accomplishing this works more or
less as follows:

1. Identify a list of test data that covers the boundaries of
the likely inputs that your program will have to deal
with.

2. Identify how you expect your program to respond to
these inputs.

3. Work through your algorithm using a pen and paper
putting this test data into the algorithm and seeing how
it behaves. This process is called desk checking. If the
results from your algorithm are as you expected (from
Step 2) then you algorithm is correct.

4. Apply the same test data to your program once you've
written it: if you get the same results as your algorithm,
then your program is correct.

ICT159 Lecture Notes Topic 2 – Page 32

Test Tables
 A test table is a common way of showing test output from

your program. Below is an example:

Test Description Inputs Expected
Outputs

Algorithm
Outputs

Program
Success/Failure

…..

 Test Description: this is a very brief outline of what this
particular test aims to demonstrate.

 Inputs: a list of the inputs relevant to this particular test.
More information on how to select appropriate inputs
will be found in the notes in Lab 2.

 Expected Outputs: what you believe the correct results
should be for this particular test.

 Algorithm Outputs: the results you get after desk checking
the specified inputs against the algorithm. Sometimes this
is labelled "Actual Outputs", however, it still refers to the
result of the desk check of the algorithm and not the code.

 Program Success/Failure: does the output from the
program match the output from the algorithm? Note that
this assumes the algorithm performed correctly.

 In addition to filling in the test table for your program, for
major programming projects (e.g., your assignments) you
should also provide some copies of sample output from
your program.

 Ideally these should cover all of the relevant test data
from your test table.

ICT159 Lecture Notes Topic 2 – Page 33

CODING STYLE
Introduction
 Coding style is one of the most important issues in

programming.
 The way that the code is laid out has a massive impact on

how easily it can be read and understood, both by the
original programmer and by others.

 However, it is also one of the most poorly done things when

it comes to beginner programmers.
 This is partly due to the fact that there is a lot to learn all

at once and so some things get forgotten.
 But it is also because beginner programmers often fail to

appreciate its importance.

 In this unit coding style has a significant impact on the

marks you will receive for all your submitted programs.
 In general you can expect approximately 25% of these marks

to relate to coding style.

 This is because the most useful code is not necessarily code

that works correctly but that which can be easily understood.

 Code that works but is totally incomprehensible will

probably have a short life because sooner or later (usually
sooner) it will have to be edited and changed.

 If it can't be understood then it will probably be thrown
out and the programmer will start again from scratch.

 On the other hand code that isn't quite correct but is easily

understood can be quickly fixed and improved.

ICT159 Lecture Notes Topic 2 – Page 34

Commenting
 Commenting is one of the biggest aspects of coding style as

it tells the reader what the code does.

 As indicated comments in C begin with /* and end in */
 Anything between these will be ignored by the compiler.

 However, the way you use comments is very important.
 Comments should tell the reader what the code does.
 However, you can assume that the reader understands the

language the code is written in!

 So comments should not spell out what is obvious to
someone who understands the language.

 For example the following are pointless comments:
 /* Initialise the integer to zero */

 int i = 0 ;

 /* Add up the numbers */

 i = a + b;

 Do not waste your time typing these sorts of comments!

 In particular, don't try and comment every line.

 Think about what parts of the code you might want help

understanding if the code belonged to someone else and
you were reading it.

An example of a more useful comment might be:

 /* Calculate total price by multiplying

 ex-GST price by GST percentage + 100%

 */

 total = price * (1+GST);

ICT159 Lecture Notes Topic 2 – Page 35

 This may mean that, contrary to popular opinion, your
programs may require relatively few comments.

 Carefully thought-out comments in the required areas are
far better than useless verbose comments.

 Your comments should also not be too “low-level”.
 Describing each individual step in a tricky algorithm is

probably not going to help the reader because they will
already understand the individual steps, just not how they fit
together to accomplish the task.

 It's usually best to aim your comments at a level above this.
 Say both what this part of your code does and, in general

terms, how it does it.

 It is also common practice to write “header comments”

where at the start of a program (or program module – Topic
6) you write a few lines briefly describing what the program
does.

 Most people often include a date, the filename of the
program and their name.

 These sorts of comments are a good idea and are expected as

part of this unit.
 However, you will not see these sorts of comments in the

programs in these lecture notes in order to save space.
 But you should include them in your own programs!

ICT159 Lecture Notes Topic 2 – Page 36

Variable Naming
 Variable naming is a subtle aspect of coding style that is

often neglected.

 Your variable names should tell the reader of the program

about the data being stored.
 A good variable name means you shouldn't need to add a

comment explaining what the variable is for.

 The principal for choosing a variable name is that the name

should be as descriptive as necessary and a short as possible.
 Generally, names should be no more than 10 characters.
 Feel free to use abbreviations but try to keep them self-

explanatory.
 If they aren't then you should add a comment at the point

where you declare the variable.

 There are usually variable naming conventions that apply to

each language you use so you should adhere to these also.

 A convention common to most languages is to start the name

with a lower case.
 Since spaces cannot be used sometimes mixed-case or

underscores are used to “separate” words, e.g.:

 int myNum;

 int my_num;

 So called “throw-away” variables that have limited uses as

temporary variables or “counters” (Topic 5) are often given
single letter names and this is perfectly acceptable:

 int i;

ICT159 Lecture Notes Topic 2 – Page 37

Indenting and Whitespace
 Another issue relating to coding style is the use of so-called

whitespace, including indentation.

 Indentation plays a vital role in allowing the program's

structure to be easily identified when its code is being read.
 This has only limited impact on the very simple programs

we've seen so far, however, in the next topic you will begin
to see how important it is.

 The general rule to remember is to always indent after an

opening curly bracket and to unindent before the
corresponding closing curly bracket.

 This marks out “blocks” of code that all relate to one
particular part of the program.

For example:
 int main()

 {

 printf(“Notice the indentation?\n”);

 return(0);

 }

 The indentation should always be by a fixed amount.

 The easiest way to do this is using the TAB character as
this is quick and ensures that the spacing is even.

 This is the technique you should use in this unit.

 Finally use whitespace in the form of blank lines in your

program to indicate “sub-blocks” of code, that is a small
number of lines which all relate to the one simple task.

 Examine the GST program for the previous section for
examples of this.

